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SUMMARY

There is heightened interest in using high-throughput sequencing technologies to quantify abundances of
microbial taxa and linking the abundance to human diseases and traits. Proper modeling of multivariate
taxon counts is essential to the power of detecting this association. Existing models are limited in han-
dling excessive zero observations in taxon counts and in flexibly accommodating complex correlation
structures and dispersion patterns among taxa. In this article, we develop a new probability distribution,
zero-inflated generalized Dirichlet multinomial (ZIGDM), that overcomes these limitations in modeling
multivariate taxon counts. Based on this distribution, we propose a ZIGDM regression model to link
microbial abundances to covariates (e.g. disease status) and develop a fast expectation–maximization
algorithm to efficiently estimate parameters in the model. The derived tests enable us to reveal rich pat-
terns of variation in microbial compositions including differential mean and dispersion. The advantages
of the proposed methods are demonstrated through simulation studies and an analysis of a gut microbiome
dataset.

Keywords: Compositional data analysis; Differential abundance; Hierarchical model; Microbiome; Score test; Zero-
inflated model.

1. INTRODUCTION

The human microbiome is the microbe population living in and on the human body. The importance of
microbiome in human health and disease has been increasingly recognized. Research in this area has
begun to discover relationships between human microbiome and many complex diseases such as cancer,
diabetes, psoriasis, and obesity (Cho and Blaser, 2012; Cho and others, 2012; Qin and others, 2012; Ahn
and others, 2013; Alekseyenko and others, 2013). Advances in high-throughput sequencing technologies
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ZIGDM regression for microbiome data 699

allow scientists to accurately quantify a wide variety of microbes. In most microbiome studies, the data
come from high-throughput sequencing of the 16S ribosomal ribonucleic acid (rRNA) gene. This gene
is the target in sequencing experiments because it is ubiquitous in the bacterial kingdom, comprised
of conserved and variable regions, and evolves at relative constant rates (Kuczynski and others, 2012).
These features allow us to determine the types and abundances of different microbes in a sample with
high sensitivity. By comparing sequencing reads to a reference 16S rRNA database, each sequence can be
assigned to a series of taxonomic identities (i.e. lineage) at the levels of kingdom, phylum, class, order,
family, and genus (DeSantis and others, 2006; Cole and others, 2007; Liu and others, 2008; Jovel and
others, 2016). Therefore, for each taxonomic level, the final data from one sample can be summarized as
a vector of read counts, referred to as taxon counts, with each component corresponding to a taxon at that
particular level. The total taxon counts for each sample is bounded by the sequencing depth that does not
reflect the actual microbial load in the sample. Thus, the taxon counts are compositional data and only
reflect the relative abundances (i.e. proportions) of different microorganisms.

Linking multivariate taxon counts to covariates of interest (as a special case, detecting differential
abundance between groups) is the common practice in microbiome studies of human disease. The quasi-
conditional association test (QCAT) does not make any distributional assumption on taxon counts (Tang
and others, 2017). This non-parametric test is very robust to the underlying correlation structures, but can
be less powerful than parametric tests based on suitable distributional assumptions. In addition, the test
is underpowered in the presence of excessive zeros in taxon counts. In the microbiome data, most taxa
exhibit zero-inflation with zero observations representing the absence of the taxa in the samples (often
referred to as structural zeros) or the undersampling of the rare taxa (often referred to as sampling zeros)
(Li, 2015). The two-part version of QCAT models positive counts and zero counts separately and combines
association evidence from both parts (Tang and others, 2017). This test is more powerful than regular
QCAT if taxon counts are zero-inflated. However, the two-part test does not distinguish different types of
zeros. Indeed, it is not possible to disentangle structural zeros and sampling zeros unless fitting a good
parametric model to the data.

The power of parametric tests heavily depends on how well the adopted probability distribution fits the
data. The Dirichlet multinomial (DM) distribution is commonly used to model taxon counts. In the DM,
a vector of counts follows the multinomial distribution with underlying proportion parameters sampled
from a Dirichlet distribution. The DM has been shown to fit microbiome data better than the multinomial
distribution and many statistical methods have been developed based on the DM (La Rosa and others, 2012;
Chen and Li, 2013; Wadsworth and others, 2017; Wang and Zhao, 2017). In particular, two DM-based
association tests exist: one tests for differential mean and the other tests for both differential mean and
dispersion (La Rosa and others, 2012). The test for differential mean assumes homogeneous dispersion
levels between groups, but many scenarios can lead to deviations from this assumption. It is well-known
that microbiome compositions are very dynamic—the abundance of one microbe can be altered by the
presence/absence of other microbes that cooperate or compete with that microbe, as well as by changes in
environmental factors such as temperature, host diet, and lifestyle (Gilbert and others, 2016). Therefore,
the disease-microbe association can be moderated by many factors, resulting in heterogeneous dispersion
levels between the disease and control groups. A taxon with heterogeneous dispersion could represent a
previously undetected interaction with other taxa or environmental factors. Consequently, ignoring the
differential dispersion misses the opportunity of identifying these important taxa.

Several recent studies have shown that the DM may not be adequate for microbiome data (O’Brien
and others, 2016; Sankaran and Holmes, 2017; Shi and Li, 2017; Tang and others, 2017). Specifically,
the DM model intrinsically imposes a negative correlation among taxon counts, whereas the actual data
display both positive and negative correlations (Mandal and others, 2015). In addition, the DM has only
one dispersion parameter so that it cannot flexibly handle various dispersion patterns and zero-inflation
levels among multiple taxa.
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700 Z.-Z. TANG AND G. CHEN

Generalized DM (GDM) distribution addresses one key limitation of the DM by allowing more general
covariance structure. Comparing to the DM, the GDM chooses a more flexible distribution, the Generalized
Dirichlet (GD) (Connor and Mosimann, 1969), as a prior for the multinomial. The GDM model has not
been applied to microbiome data. It is not clear if the additional parameters in the GDM are necessary
for modeling microbiome data and if the GDM can handle excessive zeros in taxon counts. In addition,
the complex form of the GDM probability density function renders numerical challenges in statistical
inference (Zhang and others, 2017).

In this article, we develop a new probability distribution—zero-inflated GDM (ZIGDM)—for modeling
microbiome compositional data that includes the GDM as a special case. In contrast to the DM model, the
ZIGDM has additional parameters to flexibly accommodate the over-dispersion and zero-inflation of the
data. We focus on demonstrating the usefulness of this additional flexibility in microbiome association
analysis. We propose to use the ZIGDM regression model to link the mean and dispersion levels of the
microbial abundance to the covariates of interest. Based on the ZIGDM regression, we derive association
tests for detecting differential mean and dispersion. Like the GDM, the ZIGDM model does not belong
to the natural exponential family and the parameter estimation is not simple. To meet this challenge, we
develop a fast expectation–maximization (EM) algorithm. We use extensive simulation studies to evaluate
the performance of these tests. An application to a gut microbiome data leads to a discovery of differential
microbial sub-compositions between the body mass index (BMI) groups. The ZIGDM and GDM models
fit the gut microbiome data significantly better than the DM model.

2. GD AND ZIGD

2.1. GD model for random proportions

We consider K + 1 taxa in the microbial composition with a total of N sequencing reads. We denote the
vector of counts as Y = (Y1, . . . , YK)with YK+1 = N −∑K

j=1 Yj, and the underlying unobserved proportions

as P = (P1, . . . , PK) with PK+1 = 1 − ∑K
j=1 Pj. To flexibly model random proportions with a complex

correlation structure, Connor and Mosimann (1969) proposed the Generalized Dirichlet (GD) distribution.
Specifically, the GD random proportions P can be constructed from a set of mutually independent Beta
variables Z = (Z1, . . . , ZK) as

P1 = Z1, Pj = Zj

j−1∏
i=1

(1 − Zi), j = 2, . . . , K . (2.1)

This GD construction in (2.1) resembles the stick-breaking process for constructing a truncated Dirichlet
process (Ishwaran and James, 2001). The density function for Zj can be written as f (Zj) = 1

B(aj ,bj )
Z

aj−1
j

(1 − Zj)
bj−1, where aj > 0 and bj > 0 are two parameters in the Beta distribution and B(·, ·) is the Beta

function. Applying the transformation, we obtain the density function of P as

f (P) =
K∏

j=1

1

B(aj, bj)
P

aj−1
j (1 − P1 − . . .− Pj)

cj , (2.2)

where cj = bj − aj+1 − bj+1 for j = 1, . . . , K − 1 and cK = bK − 1. This distribution is referred to as
GD(a, b), where a = (a1, . . . , aK) and b = (b1, . . . , bK). Conversely, a set of mutually independent Beta
variables can be derived from a GD random proportions P by the transformation

Z1 = P1, Zj = Pj

/(
1 −

j−1∑
i=1

Pi

)
, j = 2, . . . , K . (2.3)
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The GDM is given by using the GD as a prior for the multinomial distribution. Wong (1998) has shown
that the GD is a conjugate prior for the multinomial. Specifically, suppose Y follows the multinomial
distribution with a GD(a, b) prior on the proportion parameters P, the posterior probability of (P | Y) is
a GD(a∗, b∗), where a∗ = (a∗

1, . . . , a∗
K), b∗ = (b∗

1, . . . , b∗
K), a∗

j = aj + Yj and b∗
j = bj + Yj+1 + . . .+ YK+1,

j = 1, . . . , K . The GDM has been applied to model multivariate count data with complex correlation
structures such as in RNA-seq data analysis (Zhang and others, 2017). However, its usefulness in analyzing
microbiome data has not been evaluated.

2.2. ZIGD model for random proportions with zero components for absent taxa

The GD model assumes all taxa have positive proportions (i.e. are present in the sample) and the observed
zeros in Y are sampling zeros. To model absent taxa (i.e. structural zeros), we assume Zj follows zero-
inflated Beta (ZIB) distribution with parameters (πj, aj, bj), where πj represents the probability of Zj = 0.
We, then, transform these Z’s to P’s using (2.1), and refer to the resulting distribution of P as ZIGD(π , a, b),
where π = (π1, . . . ,πK). Clearly, Zj = 0 is equivalent to Pj = 0 based on their relationship (2.1). We
let I (·) denote the indicator function. The variable �j = I (Zj = 0) = I (Pj = 0) follows Bernoulli(πj)

and indicates the absence and presence of the taxon j by values of 1 and 0, respectively. If we assume all
taxa are present (�1 = . . . = �K = 0), the ZIGD becomes the GD. Suppose we have L taxa present in
the sample. We let U = (u1, . . . , uL) denote the set of indexes for these taxa (i.e. �u1 = . . . = �uL = 0).
The complement set U includes the indexes for the absent taxa. Suppose we observe M taxa with zero
counts. We let V = (v1, . . . , vM ) denote the set of indexes for these taxa (i.e. Yv1 = . . . = YvM = 0) and
V denote the complement of set V . Note that the two sets U and V are not exclusive: their intersection
U ∩ V indexed taxa that are present in the sample but have zero counts due to the undersampling in the
sequencing experiment (i.e. sampling zeros).

We can use the ZIGD as a prior for the multinomial and term the resulting marginal distribution for the
counts as ZIGDM. In the remaining content of this section, we show that the ZIGD is a conjugate prior for
the multinomial. In the derivation, we let XA denote the sub-vector of vector X defined by the index set
A. Suppose Y follows a multinomial with a ZIGD(π , a, b) prior on the proportion parameters P. We let
� = (�1, . . . ,�K). Because �j = I (Pj = 0), we have f (P, �) = f (P), hence, the posterior probability
of the proportions given observed counts can be expressed as

f (P | Y) = f (P, � | Y) = f (P | �, Y)f (� | Y). (2.4)

Because Pj = 0 when �j = 1 (a taxon has the proportion of 0 if it is absent from a sample), we
have f (P | �) = I (PU = 0)f (PU | �U = 0, �U = 1). Because f (PU | �U = 0, �U = 1) follows the
GD(aU , bU) and the GD is a conjugate prior for the multinomial, the posterior probability f (PU | �U =
0, �U = 1, Y) follows the GD(a∗

U , b∗
U). Because �j = 0 when Yj > 0 (a taxon is present in the sample if

its count is positive), we have f (� | Y) = I (�V = 0)f (�V | YV = 0, YV > 0). The mass function for
�V given YV = 0, YV > 0 can be derived as follows

f (�V | YV = 0, YV > 0)

∝ f (�V)f (YV = 0, YV > 0 | �V , �V = 0)

= f (�V)

∫
P

f (YV = 0, YV > 0 | P, �V , �V = 0)f (P | �V , �V = 0)dP

∝
∏
j∈V

{
π
�j
j (1 − πj)

(1−�j )
} ∏

j∈U∩V

{B(a∗
j , b∗

j )

B(aj, bj)

}
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702 Z.-Z. TANG AND G. CHEN

=
∏
j∈V

{
π
�j
j

[
(1 − πj)

B(a∗
j , b∗

j )

B(aj, bj)

](1−�j )
}

. (2.5)

The last equality holds because�j = 0 if and only if j ∈ U by definition. Hence, the posterior probability
f (P | Y) follows a ZIGD with zero-inflation on the taxa having observed zero counts and the probability
of the observed zero being structural zero is

πj

πj+(1−πj )
B(a∗

j ,b∗
j )

B(aj ,bj )

(j ∈ V).

3. ZIGDM REGRESSION MODEL

Suppose we have n subjects measured on K + 1 taxa. We let Yij and Pij denote the observed count and
the underlying true proportion for taxon j in subject i, and Xi denote the d-dimensional vector including a
unit component for the intercept, covariates of interest, and confounding variables. We assume the count
vector Yi = (Yi1, . . . , YiK) follows the ZIGDM(π i, ai, bi), where π i = (πi1, . . . ,πiK), ai = (ai1, . . . , aiK),
and bi = (bi1, . . . , biK). As described in the previous section, the equivalent hierarchical model can be
expressed as

�ij ∼ Bernoulli(πij), j = 1, . . . , K ,

Zij = 0 if �ij = 1, Zij | �ij = 0 ∼ Beta(aij, bij), j = 1, . . . , K ,

Pi1 = Zi1, Pij = Zij

j−1∏
k=1

(1 − Zik), j = 2, . . . , K ,

Yi | Pi ∼ Multinomial(Pi, Ni), where Pi = (Pi1, . . . , PiK) and Ni =
K+1∑
j=1

Yij. (3.1)

Under this model, π i, ai, and bi are three possible sets of parameters that can be linked to Xi. For each
taxon j in subject i, the πij controls the probability of absence and the aij and bij control the abundance
distribution at the presence. To facilitate the interpretation, we model μij = aij/(aij + bij) and σij =
1/(1+aij +bij) as opposed to aij and bij, where μij pertains to the mean of the Beta variable and σij can be
viewed as the dispersion parameter because the variance of the Beta variable takes the formμij(1−μij)σij.
It is natural to use logit link functions because πij’s, μij’s and σij’s take values between 0 and 1:

πij = eγ
T
j Xi

1 + eγ
T
j Xi

, μij = eα
T
j Xi

1 + eα
T
j Xi

, and σij = eβ
T
j Xi

1 + eβ
T
j Xi

, j = 1, . . . , K , (3.2)

where γ j = (γ1j, . . . , γdj), αj = (α1j, . . . ,αdj), and β j = (β1j, . . . ,βdj) are regression coefficients for taxon
j. The design matrices are not necessarily the same for the three features of abundance distribution (i.e.
absence probability, mean, and dispersion). For ease of presentation, we keep them the same in describing
the regression model.

We write the complete set of parameters as θ = (γ 1, . . . , γ K , α1, . . . , αK , β1, . . . , βK). The likelihood-
based inference on θ is not simple because the observed log-likelihood function is complicated. We
describe below an efficient EM algorithm for fitting the model and estimating parameters. Formula (3.3)
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ZIGDM regression for microbiome data 703

gives the complete data log-likelihood expressed in terms of Z’s:

l(θ) = log

[
n∏

i=1

{
f (Yi | Zi)

K∏
j=1

f (Zij)

}]

=
n∑

i=1

log {f (Yi | Zi)}

+
K∑

j=1

n∑
i=1

{
�ij logπij + (1 −�ij) log(1 − πij)+

(1 −�ij)
[− log(B(aij, bij))+ (aij − 1) log(Zij)+ (bij − 1) log(1 − Zij)

] }
,

(3.3)

where aij = μij(1/σij − 1) and bij = (1 −μij)(1/σij − 1). Using Z’s instead of P’s allows us to derive the
explicit form of posterior expectations in the E-step and estimate parameters for each taxon independently
in the M-step.

In the t-th E-step, we need to compute the expected complete data log-likelihood,

Q∗
θ =

K∑
j=1

n∑
i=1

E
{
�ij logπij + (1 −�ij) log(1 − πij)+

(1 −�ij)
[− log(B(aij, bij))+ (aij − 1) log Zij + (bij − 1) log(1 − Zij)

] }
,

(3.4)

where the expectation is with respect to the posterior distributions of (�i | Yi; θ
(t−1)) and (Zi |

�i, Yi; θ
(t−1)) with θ (t−1) being the parameter estimates in the (t − 1)-th M-step. Based on the results

from the previous section, we have

�∗
ij = E

(
�ij | Yi

) =
⎧⎨
⎩

0 if Yij > 0
πij

πij+(1−πij)
B
(

a∗
ij ,b∗

ij

)
B(aij ,bij)

if Yij = 0 ,

A∗
ij = E

(
log Zij | Yi,�ij = 0

) = ψ
(
a∗

ij

)− ψ
(
a∗

ij + b∗
ij

)
,

B∗
ij = E

(
log(1 − Zij) | Yi,�ij = 0

) = ψ
(
b∗

ij

)− ψ
(
a∗

ij + b∗
ij

)
, (3.5)

where a∗
ij = aij + Yij, b∗

ij = bij + Yi(j+1) + . . .+ Yi(K+1), and ψ(·) is the digamma function.
Thus, Q∗

θ can be rewritten as

Q∗
θ =

K∑
j=1

Q∗
γj

+
K∑

j=1

Q∗
αj ,βj

, (3.6)

where Q∗
γj

= ∑n
i=1{�∗

ij logπij + (1 −�∗
ij) log(1 − πij)} and Q∗

αj ,βj
= ∑n

i=1(1 −�∗
ij){− log(B(aij, bij)) +

(aij − 1)A∗
ij + (bij − 1)B∗

ij}.
In the t-th M-step, for each taxon j, we obtain γ

(t)
j from maximizing the function Q∗

γj
and obtain α

(t)
j

and β
(t)
j from maximizing the function Q∗

αj ,βj
. The computation burden for the optimization is the same

as a logistic and a weighted Beta regressions. Because the parameters for individual taxa are updated
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704 Z.-Z. TANG AND G. CHEN

independently, we can estimate parameters for all taxa in parallel by distributing the optimization jobs
to multiple computing cores. In summary, the EM algorithm is computationally efficient because of the
simple calculation of posterior expectations and the ability to update parameters in a taxon-by-taxon
manner.

4. ASSOCIATION TESTS

By testing the different sets of parameters in the ZIGDM regression model, we can reveal a variety of
patterns of variation in microbial communities. In this article, we focus on testing the null hypothesis that
the covariates are not associated with mean (H0 : α∗1 = . . . = α∗K = 0) or dispersion (H0 : β∗1 = . . . =
β∗K = 0), where α∗j and β∗j are subsets of αj and β j corresponding to the covariates of interest. We may
test the null hypotheses by using the score, Wald, or likelihood ratio (LR) statistics. We have adopted
score statistics, which are computationally faster and more stable than Wald and LR statistics (Lin and
Tang, 2011). The derivation of the score statistic is included in the Appendix of supplementary material
available at Biostatistics online. In our numerical studies, we evaluate the performance of score tests based
on the ZIGDM and GDM regression models. When performing the association test for one feature of the
abundance distribution (e.g. mean), we include only the intercept in models for the other features (e.g.
absence probability, dispersion).

The asymptotic approximation of the test statistics may not be accurate when most of the observations
are zeros, especially when the sample size is small. Therefore, we need to use permutation techniques
to obtain P-values. It is computationally efficient to obtain the permutation P-values for score statistics
because the null model (without confounding variables) would only include the intercept term and needs
to be fit only once in the permutation procedure. In particular, we permute the covariate of interest and
calculate the score test statistic in each permutation. The permutation P-value is the proportion of the
permuted test statistics that are greater than the observed statistic.

5. SIMULATION EVALUATIONS

5.1. Simulation strategy

We conducted extensive simulation studies to investigate the performance of the proposed and existing
methods. The ZIGDM1 and ZIGDM2 are tests based on the ZIGDM distribution for detecting differential
mean and dispersion, respectively. The GDM1 and GDM2 are the GDM counterparts. The DM1 and DM2

are two tests based on the DM distribution. The DM1 is a test for detecting differential mean and the DM2

is an omnibus test for jointly detecting differential mean and dispersion. In the current implementation
of these DM tests, the DM1 employs the Wald statistic and the DM2 employs the LR statistic (La Rosa
and others, 2012). We used the HMP package in R for the DM tests in our numerical studies (La Rosa
and others, 2016). The QCAT1 and QCAT2 are distribution-free tests based on generalized score statistics
for detecting differential mean. The QCAT2 employs the two-part model with one part modeling zero
observations and the other part modeling positive abundance. We used the miLineage package in R for
the QCAT tests in our numerical studies.

We simulated six taxon counts for two groups with same sample sizes and tested differential abundance
in the six taxa between the two groups. The number of taxa is chosen to be six in order to reflect the fact
that testing sub-composition on a taxonomic tree usually involves less than 10 taxa (see details in Section
6). We considered the sample sizes of 100 and 200 in all simulation studies. The total sequencing reads
for each sample was simulated from Poisson(1000). In the power evaluation, we perturbed one taxon by
changing either its mean abundance or its dispersion level in one group. We used 5000 simulated datasets
to evaluate Type I error and power of the tests at the 0.05 significance level.
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In the first set of simulations, taxon counts were generated from the DM model. In particular, the vector
of proportion parameters for the multinomial distribution was simulated from a Dirichlet distribution with
equal mean parameters of 1/6 and the dispersion parameter of 0.3. To evaluate power, we randomly
selected a taxon and sampled its mean parameter from Uniform (0, 0.5) or its dispersion parameter from
Uniform(0, 0.5).

In the second set of simulations, taxon counts were generated from the GDM or ZIGDM model. In
particular, we first simulated five independent Beta or ZIB variables (Zi1, . . . , Zi5) with equal Beta mean
parameters of 0.2 and equal Beta dispersion parameters of 0.2. For the ZIGDM, the zero-inflation levels
were sampled without replacement from (0.1, 0.2, 0.4, 0.6, 0.8). We then transformed the Z’s into a vector
of proportions (Pi1, . . . , Pi5) according to (2.1). The proportion of the sixth taxon was determined by
1 − ∑5

j=1 Pij. To evaluate power, we changed the Beta mean or dispersion parameter of a taxon: the
Beta mean parameter for the differential taxon was sampled from Uniform(0, 0.5); the Beta dispersion
parameter for the differential taxon was sampled from Uniform(0, 1). For the GDM, the differential taxon
was randomly picked; for the ZIGDM, the differential taxon was the one with a certain level of zero-
inflation. For example, when we consider the zero-inflation level of 0.2, we only perturb the taxon with
that particular level of zero-inflation.

In the third set of simulations, taxon counts were generated from the Log-Normal (LN) or zero-
inflated LN (ZILN) model. This set of simulations are designed to evaluate the robustness of different
tests to the underlying distributions. In particular, we first simulated (Wi1, . . . , Wi5) from a multivariate
normal distribution with means of zero, variances of one, and a polynomial decay correlation matrix


 given by 

ρρ

′ = 0.5|ρ−ρ′ |. We then transformed the W ’s into a vector of proportions (Pi1, . . . , Pi5) =(
eWi1∑5

j=1 e
Wij +1

, . . . , eWi5∑5
j=1 e

Wij +1

)
. For the ZILN, we randomly changed the observed proportions for each taxon

to zero according to the zero-inflation levels sampled without replacement from (0.1, 0.2, 0.4, 0.6, 0.8).
The proportion of the sixth taxon was determined by 1 − ∑5

j=1 Pij. To evaluate power under the LN,
we changed the Normal mean or variance for a randomly-picked taxon: its Normal mean parameter was
sampled from Uniform(0, 1), and its Normal variance parameter was sampled from Uniform(1, 6). To
evaluate power under the ZILN, we changed the Normal mean or variance for the taxon with a certain
level of zero-inflation: its Normal mean parameter was sampled from Uniform(0, 2); its Normal variance
parameter was sampled from Uniform(1, 8).

5.2. Simulation results

The empirical Type I errors for asymptotic and permutation tests are presented in Table 1. The Type I errors
are properly controlled in the permutation tests. The asymptotic distribution-free tests QCAT1 and QCAT2

preserve the Type I error in all scenarios. The rest of the asymptotic tests tend to be too liberal under
zero-inflated models (i.e. ZIGDM and ZILN models), especially when the data are not generated from
the distribution the test assumes. The DM2 asymptotic test is overly conservative under non-zero-inflated
models (i.e. DM, GDM, and LN models). For a fair comparison, we only report permutation results in the
power evaluation.

The power of permutation tests under non-zero-inflated models are presented in Table 2. The results
for ZIGDM and GDM are identical under the LN model because almost all simulated taxa counts are
positive. When the mean differs, the differential-mean tests (ZIGDM1, GDM1, DM1, QCAT1, and QCAT2)
outperform the differential-dispersion tests (ZIGDM2, GDM2). As the DM2 jointly tests the mean and
dispersion, we view it as both the differential-mean and differential-dispersion tests. When the disper-
sion differs, differential-dispersion tests are more powerful than their differential-mean counterparts. The
differential-mean test QCAT2 yields decent power for detecting differential dispersion if the change in
dispersion also alters the percentages of zero counts in the data (see settings in the DM and GDM models).
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Table 1. Type I error of the tests

Model n ZIGDM1 ZIGDM2 GDM1 GDM2 DM1 DM2 QCAT1 QCAT2

Asymptotic DM 100 0.058 0.041 0.064 0.057 0.051 0.012 0.048 0.042
200 0.058 0.058 0.054 0.054 0.050 0.009 0.049 0.051

GDM 100 0.047 0.033 0.060 0.057 0.042 0.022 0.042 0.028
200 0.053 0.041 0.059 0.050 0.056 0.018 0.055 0.039

LN 100 0.072 0.041 0.072 0.041 0.058 0.027 0.047 0.048
200 0.057 0.037 0.057 0.037 0.055 0.024 0.047 0.049

ZIGDM 100 0.110 0.120 0.130 0.099 0.061 0.100 0.046 0.043
200 0.069 0.062 0.110 0.092 0.060 0.100 0.045 0.049

ZILN 100 0.085 0.072 0.180 0.190 0.064 0.230 0.047 0.050
200 0.057 0.049 0.180 0.190 0.062 0.210 0.044 0.050

Permutation DM 100 0.048 0.048 0.054 0.050 0.051 0.050 0.050 0.049
200 0.046 0.054 0.046 0.051 0.051 0.047 0.049 0.050

GDM 100 0.046 0.046 0.046 0.043 0.042 0.050 0.047 0.050
200 0.050 0.054 0.050 0.050 0.052 0.050 0.055 0.052

LN 100 0.053 0.046 0.053 0.046 0.054 0.056 0.051 0.052
200 0.052 0.047 0.052 0.047 0.046 0.049 0.047 0.050

ZIGDM 100 0.041 0.052 0.048 0.056 0.051 0.047 0.054 0.046
200 0.048 0.050 0.051 0.049 0.045 0.050 0.048 0.050

ZILN 100 0.046 0.050 0.052 0.051 0.047 0.050 0.048 0.052
200 0.048 0.049 0.049 0.049 0.049 0.049 0.044 0.048

Table 2. Power of the permutation tests under non-zero-inflated models

Model Difference n ZIGDM1 ZIGDM2 GDM1 GDM2 DM1 DM2 QCAT1 QCAT2

DM Mean 100 0.52 0.33 0.67 0.47 0.60 0.66 0.58 0.59
200 0.67 0.54 0.76 0.62 0.71 0.76 0.70 0.72

Disp 100 0.17 0.72 0.42 0.77 0.05 0.76 0.06 0.64
200 0.52 0.84 0.60 0.84 0.05 0.81 0.05 0.75

GDM Mean 100 0.60 0.27 0.66 0.34 0.59 0.60 0.60 0.59
200 0.70 0.39 0.76 0.48 0.70 0.71 0.71 0.70

Disp 100 0.17 0.47 0.56 0.79 0.07 0.55 0.07 0.59
200 0.23 0.54 0.67 0.86 0.07 0.62 0.08 0.66

LN Mean 100 0.48 0.06 0.48 0.06 0.50 0.51 0.52 0.52
200 0.63 0.06 0.63 0.05 0.65 0.66 0.66 0.66

Disp 100 0.05 0.70 0.05 0.70 0.24 0.39 0.17 0.18
200 0.06 0.83 0.06 0.83 0.47 0.61 0.40 0.41

When the mean differs, the performances of differential-mean tests are largely similar. In contrast, when
the dispersion differs, the performances of differential-dispersion tests are diverse: the GDM2 is more
powerful and robust than the ZIGDM2 and DM2 tests. In practice, we can use statistical model selection
criteria (e.g. Bayesian information criterion, Akaike information criterion) to choose between ZIGDM
and GDM models.
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Fig. 1. Power of the permutation tests under ZIGDM and ZILN models when the sample size is 100. The pattern of
variation is indicated above each graph.

The power of permutation tests under zero-inflated models when n = 100 are displayed in Figure 1 (see
Figure 2 of supplementary material available at Biostatistics online for the results when n = 200). Each
plot demonstrates the power curve as a function of the zero-inflation levels. When the mean differs, the
ZIGDM1 outperforms the other tests. When the dispersion differs, under the ZIGDM model, the ZIGDM2,
and GDM2 perform substantially better than the other tests; under the ZILN model, the ZIGDM2 is the
most powerful test and the other tests have dramatic power loss.

In summary, comparing to the DM tests, the GDM and ZIGDM tests are more powerful to detect
differential mean/dispersion and are more robust to the underlying distributions. If the data are zero-
inflated, the ZIGDM tests are more desirable than the GDM tests. If the data are not zero-inflated, the
GDM tests should be preferred over the ZIGDM tests.
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Fig. 2. Taxonomic tree for the gut microbiome data. The root nodes of the discovered lineages are marked with stars
and annotated by the names of the taxa on the root nodes. The lineages under family Prevotellaceae and kingdom
Bacteria were identified exclusively by the ZIGDM test. Three most abundant phyla (Bacteroidetes, Firmicutes, and
Proteobacteria) are also annotated in the tree.

6. GUT MICROBIOME AND BMI

Gut microbiome plays an important role in obesity by contributing to nutrient digestion and absorption in
humans. Wu and others (2011) investigated the relationship between micronutrients and gut microbiome
composition. Fecal samples from 98 healthy volunteers were collected, along with their demographic data
and diet information. The sample DNA was analyzed by sequencing the V1–V2 region of the 16S rRNA
genes in the fecal samples. The sequencing reads were taxonomically classified to the genus level via
QIIME (Caporaso and others, 2010). Taxa that appear in less than two samples were removed resulting
in 80 genera.

These genera can be mapped to a taxonomic tree according to their taxonomic identities at the higher
taxonomic levels. Figure 2 displays the tree with six levels from genus to kingdom. The outer circle of
the tree represents lower taxonomic level. Each node on the tree represents a taxon. At each internal node,
counts of the sequencing reads that assigned to that node are distributed to multiple taxa at the lower
taxonomic levels (i.e. child nodes). As described in the previous literature (Shi and Li, 2017; Tang and
others, 2017), in order to identify all differential lineages on the tree, we visited every internal node;
for each node, we applied the tests to the sub-composition defined as the vector of taxon counts on its
immediate child nodes. We then employed the Benjamini–Hochberg procedure (Benjamini and Hochberg,
1995; Benjamini and Yekutieli, 2001) to control the false discovery rate (FDR). Alternative FDR control
methods that respect the hierarchical structure of the taxonomy can potentially increase discovery power
(Bogomolov and others, 2017; Lei and others, 2017). Testing sub-compositions on the lineage leverages
taxonomic structure to define the unit of the tests in a biologically meaningful way and essentially reduces
the dimension in each test. In our analysis, the number of taxa in each test is usually less than 10.
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Because dysbiosis of the gut microbiome has been shown to be associated with obesity (Sanderson
and others, 2006), we were interested in identifying differential bacterial lineages in high vs. nor-
mal BMI groups. We dichotomized the BMI value in our analysis because the current implementation
of the DM tests can only handle the group-wise comparison (La Rosa and others, 2016). The BMI
≥25 is the commonly accepted range for overweight. We performed the ZIGDM, GDM, DM, and QCAT
permutation tests to compare the mean or dispersion level of the microbial abundance between the high
BMI (≥25) and normal BMI (<25) groups over all lineages on the taxonomic tree at the family, order,
class, phylum, and kingdom levels. The P-values for all the discovered lineages (FDR = 5%) are listed
in Table 1 of supplementary material available at Biostatistics online. The DM and QCAT tests iden-
tify two BMI-associated lineages on the tree: family Ruminococcaceae (DM1 P-value = 0.0013, QCAT1

P-value = 0.00014) and family Veillonellaceae (DM2 P-value = 0.0012, QCAT2 P-value = 0.00080).
Besides family Veillonellaceae, the GDM and ZIGDM tests identified another two BMI-associated lin-
eages: family Prevotellaceae (ZIGDM2 P-value = 0.0014 and GDM2 P-value = 0.0014) and kingdom
Bacteria (ZIGDM2 P-value = 0.0016). The test for family Prevotellaceae involves two genera. The test for
kingdom Bacteria involves eight phyla, among which the three most abundant taxa (phyla Bacteroidetes,
Firmicutes, and Proteobacteria) dominate the community and the remaining five taxa are rare and the
majority of their counts are zeros. In Figure 2, all the differential lineages and the three most abundant
phyla are annotated in the tree. Figure 3 of supplementary material available at Biostatistics online dis-
plays the distributions of relative abundance for the three phyla and demonstrates significant dispersion
differences between BMI groups in phyla Bacteroidetes and Firmicutes. The dispersion difference for
taxa at such high taxonomic level is probably due to the aggregation of many low-level taxa that interact
with each other and/or with environments. On the other hand, the difference in mean abundance would
usually be difficult to detect at such high level because the differences are diluted by aggregating many
taxa with no difference in mean.

Furthermore, we used the DM, GDM, and ZIGDM models to fit individual sub-compositions defined
at internal nodes of the tree. In each model, we linked the mean, dispersion, and absence probability (in the
ZIGDM model only) to the binary BMI and obtained the maximum likelihood estimates for the coefficients
of the intercept and the binary BMI. We then generated synthetic data from each distribution with the
estimated parameters. The GDM and ZIGDM models provide superior fit for most of the sub-compositions.
For example, Figure 3 shows quantile-quantile plots of synthetic and observed relative abundances for the
families Prevotellaceae and Porphyromonadaceae under order Bacteroidales. Prevotellaceae has many
observed zeros (58%) and Porphyromonadaceae has very few (3.1%). The GDM and ZIGDM fit the
data much better than the DM for these families and the ZIGDM has the best fit at the lower tail for
Prevotellaceae. Another example for the sub-composition of three most abundant phyla under kingdom
Bacteria is shown in Figure 4 of supplementary material available at Biostatistics online. Our analysis
demonstrates that the additional parameters in GDM/ZIGDM are well-spent to provide better fit to the
data, resulting in powerful association tests.

7. DISCUSSION

In this article, we develop the ZIGDM distribution for modeling microbiome compositional data with
excess zeros, and propose score tests based on the ZIGDM regression model to detect differential mean
or dispersion level of microbial composition. In contrast to the commonly-used DM model, the ZIGDM
model provides a more flexible way of accommodating excess zeros and handling the complex correlation
structure and dispersion patterns in taxon count data. We develop an EM algorithm to efficiently estimate
parameters in the ZIGDM regression. The EM provides explicit forms of the posterior expectations in the
E-step and updates the parameters for individual taxa independently in the M-step. Extensive simulation
studies have been conducted to compare the proposed tests to existing ones. The results have demonstrated
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Fig. 3. Quantile-quantile plots from fitting three distributions to the sub-composition of two families under the order
Bacteroidales. A thousand synthetic datasets were randomly generated from each distribution with the estimated
parameters. The medians were used to draw points and the 2.5 and 97.5 percentiles were used to draw envelopes.

that the ZIGDM tests are more powerful to detect differential mean/dispersion and are more robust to
the underlying distribution if the taxon counts are zero-inflated. If the taxon counts are not zero-inflated,
the GDM tests are more desirable. In the analysis of a gut microbiome dataset, the proposed methods
identify additional lineages with differential dispersion between BMI groups. We have demonstrated that
the GDM provides a superior fit to taxon counts compared to the DM and the ZIGDM can further improve
the goodness-of-fit for taxa with many zero counts.

We can potentially develop an omnibus test by combining the mean and dispersion tests. Moreover,
besides testing the mean and dispersion, we can incorporate the test for differential presence-absence
frequencies. However, the high degrees of freedom of the omnibus test will compromise its statistical
power. To reduce the degree of the freedom, we can aggregate the abundances of multiple taxa or use
the maximum statistic in the association test (Lin and Tang, 2011). Alternatively, we can construct a test
statistic from the minimal P-value among tests for different features of the abundance distribution and
use permutation to obtain a uniform P-value (Tang and others, 2016). The performance of these tests in
analyzing microbiome data requires further study.

The multivariate association tests cannot handle high-dimensional microbial taxa, especially when
the number of taxa is larger than the sample size. This similar problem has been investigated under the
DM regression (Chen and Li, 2013; Wang and Zhao, 2017). The ZIGDM model is able to incorporate
standard regularization approaches to deal with high dimensionality. Depending on the need in practice, the
model can produce sparse estimates with the lasso penalty (Tibshirani, 1996) and the group lasso penalty
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(Yuan and Lin, 2006). In addition, a phylogenetic structure-constrained penalty function can be used to
incorporate important prior knowledge on evolutionary relationships among microbial taxa (Chen and
others, 2012). These penalized ZIGDM regressions would enable us to identify microbes with differential
mean, dispersion level, and presence-absence frequency.

8. SOFTWARE

R codes to implement the methods have been incorporated into the software miLineage, which is available
at https://tangzheng1.github.io/tanglab/software.html.

SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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